votes up 1

`weights` input should be one-dimensional.

github stars 8546
Exception Class:

Raise code

        self.d, self.n = self.dataset.shape

        if weights is not None:
            self._weights = atleast_1d(weights).astype(float)
            self._weights /= sum(self._weights)
            if self.weights.ndim != 1:
                raise ValueError("`weights` input should be one-dimensional.")
            if len(self._weights) != self.n:
                raise ValueError("`weights` input should be of length n")
            self._neff = 1/sum(self._weights**2)


    def evaluate(self, points):
😲  Walkingbet is Android app that pays you real bitcoins for a walking. Withdrawable real money bonus is available now, hurry up! 🚶

Ways to fix

votes up 2 votes down

This happens if weight is given a 2D array. The valid value is a 1D array with the same length as the dataset array.

How to reproduce the error:

pipenv install scipy numpy

from scipy import stats
import numpy as np
dataset = np.random.randint(1,10,10)
weigts = np.random.rand(10,1) # this one should be 1D, instead it is given 2D array shpaed (10,1)

kernel = stats.gaussian_kde(dataset,weights=weigts)

ValueError                                Traceback (most recent call last)
<ipython-input-18-60df39608b5e> in <module>()
      3 dataset = np.random.randint(1,10,10)
      4 weigts = np.random.rand(10,1)
----> 5 kernel = stats.gaussian_kde(dataset,weights=weigts)

/usr/local/lib/python3.7/dist-packages/scipy/stats/ in __init__(self, dataset, bw_method, weights)
    199             self._weights /= sum(self._weights)
    200             if self.weights.ndim != 1:
--> 201                 raise ValueError("`weights` input should be one-dimensional.")
    202             if len(self._weights) != self.n:
    203                 raise ValueError("`weights` input should be of length n")

ValueError: `weights` input should be one-dimensional.


from scipy import stats
import numpy as np
dataset = np.random.randint(1,10,10)
weigts = np.random.rand(10)
kernel = stats.gaussian_kde(dataset,weights=weigts)
Sep 05, 2021 kellemnegasi answer
kellemnegasi 31.6k

Add a possible fix

Please authorize to post fix